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The goal of this project is the implementation of a finite volume scheme to
solve the two-dimensional ideal MHD system. We validate the implemen-
tation by convergence tests and extend it by a GLM approach to maintain
the divergence-free condition of the magnetic field. Finally, we apply the
method to simulate a magnetic blast wave. Furthermore, for experts, the
scheme can be extended by a reconstruction technique to achieve a second
order approximation and applied to the Orszag-Tang vortex or the magnetic
rotor test case.

In order to guide the implementation process, the workshop is divided into
single projects with suggested time limits. Additionally, the support team
is always available regarding any questions. The necessary information con-
cerning the numerical method as well as the MHD system dependent defi-
nitions can be found online in the presentation slides:

http://www.mi.uni-koeln.de/NumSim/pre-conference-workshop

user name: gassner
password: students


http://www.mi.uni-koeln.de/NumSim/pre-conference-workshop

Project 1: Finite volume method for one-dimensional MHD

Estimated time limit: End of Session 1

Objective: Implementation of a first order finite volume method to solve
the one-dimensional ideal MHD equations on a periodic domain, validation
by convergence test, application to a shock-tube problem

Key elements:

periodic domain 2 = [a,b] C R divided into an uniform Cartesian grid

with equidistant cells of size Az = biﬁa

data structure for solution array, e.g. u(i,k) for i-th cell and k-th
conserved variable

first order finite volume method with local Lax-Friedrich solver at cell
boundaries

integration in time by explicit Euler method with stable CFL time
step computation

validation by convergence test

application to a shock-tube problem

Possible code structure:

f = getAdvectiveFluxX (computes the advective flux from the con-
served solution u )

lambda = getMaxEigenvalueX (computes the maximal eigenvalue of
the flux-Jacobian at a particular solution state u )

F_LLF = RiemannfluxX (computes the numerical flux at the cell inter-
faces from the left u_L and right u_R states)

deltat = computeTimestep (returns the time step determined by the
CFL condition)

integrateInTime (updates the solution in time by the finite volume
formula)

finiteVolumeMain (contains mesh and parameter definitions, initial-
ization, time loop and plotting routines)



Convergence test:
To verify the correctness of the implementation we consider the domain
2 = [0, 1] with periodic boundaries and the initial data

0 1
po=1, % = | 0.1sin(27z) |, po = 0.1, By = | 0.1sin(27z)
0.1 cos(2mx) 0.1cos(2mx)

The main advantages of this test case are, that the solution is smooth as well
as periodic and, moreover, the velocity of the Alfvén-wave remains constant
equal to one. Thus, the solution adopts the initial state for each time ¢ €IN.
Run your code with this initial data and v = 5/3. Set CFL = 0.9 and a final
time T' =1 to compute the maximal errors

— Imnax

L>*  i=1,..N, Ulzs) = Un, (2:)

€, = HU— UN,,

with respect to your approximations ﬁNV for N, = 10-2",v = 0,...,6.
Finally, we can compute the experimental order of convergence

In ()
EOC, = T” forv=1,...,6
ln( j(,:l)
and the non-constant components puvs, pvs, Bo and Bs. Illustrate the final
result for these variables in tables of the form:

v | N, | Az, | €, | EOC, |

Compound shock test
Consider the one-dimensional shock-tube in the domain Q =[—0.5,0.5] ini-
tialized as

1, <0 1, <0
x’O = ’ b x70 = ’ )
p(z,0) {0.125, x>0 p(,0) {0.1, x>0
1, =<0

Bi(z,0) = 0.75, By(z,0) = ’
1(2,0) 2(,0) {_1’ T

with v = 5/3. All other initial values are set to zero and the boundary
conditions are constant. Run this test case to the final time of "= 0.1 and
plot the density as well as the Ba-component of the magnetic field. Take
care of choosing a stable time step and a sufficiently fine mesh resolution.



Project 2: Finite volume method for two-dimensional MHD
Estimated time limit: End of Session 2

Objective: Implementation of a first order finite volume method to solve
the two-dimensional ideal MHD equations on a periodic domain, validation
by convergence test

Key elements:

« periodic domain Q = [a,b)*> ¢ R? divided into an uniform Cartesian

grid with squared cells of size Ax = Ay = b_T“

o data structure for solution array, e.g. u(i,j,k) for cell (¢, 7) and k-th
conserved variable

o extension of first order finite volume method to 2D with local Lax-
Friedrich solver at cell boundaries
— adding second flux routine g = getAdvectiveFluxY
— adapting eigenvalue and time step computation
— adding second Riemann solver G_LLF = RiemannFluxY

e integration in time by explicit Euler method with stable CFL time
step computation

o validation by convergence test

Convergence test:

As an extension of the one-dimensional Alfvén wave test we now consider the
function {(z,y) = z cos(a) + ysin(a) in the domain Q = [0, \/ﬂ X [O, \/ﬂ
and initialize the primitive variables of our solution as:

—0.1sin(27¢) sin(a) cos(a)
po=1, 0o = | 0.1sin(27w&)cos(cr) |, po=0.1, By = | sin(a) | + ¥p
0.1 cos(27¢) 0

Again, the solution of this test case is smooth as well as periodic in €2 and
the velocity of the Alfvén-wave remains constant equal to one. Thus, the
solution adopts the initial values for each time ¢ €IN.



Run your code with this initial data, o = 7/4 and v = 5/3. Set CFL = 0.9
the final time T = 1 to compute the maximal errors

€y = HU —Un, _— i,jirlli).(,Nu U(xi,yj) — UNU(aci,yj)‘
with respect to your approximations ﬁNV for N, = 10-2",v = 0,...,4.

Finally, we can again verify the correctness of the implementation with the
same EOC formula and tables as in the first project.

Bonus: Additional convergence test

So far, we used a generic Alfvén wave solution in the error analysis, which
adopts the initial values for each time ¢t €IN. But in general, we do not know
the analytical solution for systems of non-linear conservation laws. Thus,
we consult the method of manufactured solutions, in which we compute the
residual for a given solution and solve the inhomogeneous problem:

9 P Uy 1) + %G(U«c, y.1)) = Rz, y,1)

0

ot

Consider w(x,y,t) = sin (27 (z +y) — 4t) +4 in Q x Rt with Q = [0, 1]? and
the solution vector of the MHD system defined by

1 w
p=w, T=|[1], E=2w? B=|-w
0 0

with v = 2. Derive the residual R(x,y,t) for the corresponding U(z,y,t)
and solve the inhomogeneous problem with your finite volume program by
adding AtR(x,y,t) to your approximation after each time step. Then, the
numerical solution U (x,y,t) should converge against the analytical solution
of the inhomogeneous problem U(z,y,t) and you can compute the errors
and experimental order of convergence as usual. Visualize your convergence
results in a table.



Project 3: Divergence cleaning
Estimated time limit: Coffee break of Session 3

Objective: Extension of the two-dimensional finite volume scheme to main-
tain the divergence-free constraint of the magnetic field, verification by a test
example

Key elements:

« implementation of the Generalized Lagrange Multiplier (GLM) diver-
gence correction method
— introduction of additional divergence correction variable v
— modification of the magnetic field fluxes

— solving additional (hyperbolic) equation

0 0 2
Py + C%;, (&L’Bl + 3:sz> = — Zgl/J

with ¢, = 0.18 and ¢j, = Amax, the globally maximal eigenvalue
« verification

Verification test case:

In order to observe the damping and propagating of the divergence error, we
use a non-divergence-free initialization in Q = [—1,1]? defined by a Gaussian
pulse in the z-component of the magnetic field:

z? +y?
p(:U,y,O) =1, E(z,y,0) =6, Bl(xayao) =exp | —0.5 0.112
The other initial values are set to zero and the boundaries are periodic.
Again we set 7 = 5/3 and CFL = 0.5. Run this testcase for different mesh
resolutions and plot By at various times as well as the time evolution of the

discrete divergence error ||V - Bl| -

Bonus: Outflow boundary conditions
Implement more appropriate Riemann fluxes at the boundaries to avoid
re-entering of the divergence error at opposite domain boundaries.



Project 4: MHD blast wave
Estimated time limit: End of Session 3

Objective: Application of the two-dimensional finite volume solver to a 2D
MHD blast wave problem

MHD blast wave

This test problem leads to the onset of strong MHD discontinuities, relevant
to astrophysical phenomena where magnetic fields can have strong dynam-
ical effects. It describes an initially circular pressure pulse in the domain

Q = [-0.5,0.5]% defined by the radius » = /z2 + 2. Accordingly, the
primitive variables for the MHD blast wave are initialized as:
100
z,y,0) =1, Bi(x,y,0) = —
( 0) 100, r<0.1
'1:7 ) =
PAy 0.1, »r>0.1

All other initial values are set to zero, v = 1.4 and the boundary conditions
are periodic.

Run the simulation for the Euler case (Bj(z,y,0) = 0) and the MHD ini-
tialization with and without divergence cleaning until 7" = 0.01. For either
configuration plot the density p, the pressure p and the discrete divergence
error ||V - Bl|;« for the MHD simulations at various times. Take care of
choosing a stable time step and a sufficiently fine mesh resolution. How do
the simulation results differ?



Bonus Project: Reconstruction to second order

Objective: Extension of the two-dimensional finite volume solver to sec-
ond order, validation by convergence test, comparison of simulation results,
application to more test examples

Key elements:
e implementation of the linear reconstruction

— writing new routine reconstructSolution
— determination of slope in each direction by MINMOD limiter

— calling routine after each time step to perform linear re-interpolation
« implementation of Heun’s method to update solution in time
o validation by convergence test
e comparison of simulation results for magnetic blast wave
o application to Orszag-Tang vortex and magnetic rotor

Orszag-Tang vortex

Concluding, we are now able to simulate a really cool testcase, the Orszag-
Tang Vortex, which describes a turbulent plasma cloud. We consider the
domain €2 = [0, 1]2 with periodic boundary conditions and the initial data:

) . .
P=715- v; = —sin(27y) vy = sin(27x)
5 Bi= ———sin(2ry)  By= —— sin(drz)
— = — Sin( 2m = Sm{amx
P=1on P Var Y ' Var

The other initial values are set to zero and v = 5/3. Take care of choosing a
stable time step and a sufficiently fine mesh resolution. Run your simulation
until a final time of T' = 0.5 and plot the density together with contour lines
of the magnetic field at different times.

Note: This test case needs a really high resolution (and accuracy), which is
difficult to achieve with Matlab.



Magnetic rotor

As a last test case we consider the magnetic rotor, which is defined in the
domain Q = [0, 1]2 as a rotating dense circle surrounded by a static fluid.
Let r = \/(z — 0.5)2 + (y — 0.5)2 be the radius and m = == with ro, 7

T1—T0
and g fixed parameters. Then, we can initialize the primitive variables for

the magnetic rotor as:

5 10, r<mrg
p(x7y70): ) Bl(x7y70):77 p(mayvo): 1+9m7 TG[TO,H]
VAT
1, r>nr
%i_y T <To %gl'—%,T<’l“0
vi(z,y,0) = %m %—y ,T € [ro,71] va(z,y,0) = mTl;O m_% 7€ [rg, 1]
0 ,T > T 0 T > T

The other initial values are set to zero and v = 1.4. Again, we use peri-
odic boundary conditions and set rg = 0.1,71 = 0.115, up = 2. Take care
of choosing a stable time step and a sufficiently fine mesh resolution. Run

the simulation until 7" = 0.15 and plot the density p and the pressure p at
various times.

Note: This test case needs a really high resolution (and accuracy), which is
difficult to achieve with Matlab.



