Part 1: Hyperbolic PDEs and Ideal Magnetohydrodynamics (MHD)

Mathematisches Institut

August 14, 2017

Conservation laws

Many problems in natural sciences and engineering are modelled following a simple principle: The time rate of change of a quantity of interest u in a fixed volume is equal to the flux of u across the boundary of this volume.

- Mathematical translation
 - Consider a domain $\Omega \subset \mathbb{R}^d$ and the quantity of interest u defined for all points $x \in \Omega$
 - This simple principle gives the integral form (or natural form) of the conservation law

$$\frac{d}{dt} \int_{\Omega} u \, dx = -\oint_{\partial \Omega} \vec{f} \cdot \vec{n} \, ds \tag{1}$$

where the flux $\vec{f} = \vec{f}(u, x, t)$ and the normal vector \vec{n} points outward of the domain Ω

Conservation laws

- Examples for quantities of interest that are conserved
 - Mass, $u = \varrho(x, t)$
 - Momentum, $u = \varrho(x, t) \vec{v}(x, t)$
 - Energy, u = E(x, t)
- The form and structure of the fluxes \vec{f} contain the physical and mathematical considerations and are specific to the problem
 - E.g. the mass flux is given by $\vec{f} = \varrho(x,t)\vec{v}(x,t)$
- Famous examples are the Euler equations in gas dynamics and the MHD equations in plasma physics

Partial differential equation

• If we assume that \vec{f} is differentiable (smooth!) in space, we can apply Gauss' law to the surface integral and get

$$\frac{d}{dt} \int_{\Omega} u \, dx = -\int_{\Omega} \vec{\nabla} \cdot \vec{f} \, dx \tag{2}$$

• The conservation law holds for all domains Ω , thus we get the PDE form of the conservation law

$$u_t + \vec{\nabla} \cdot \vec{f} = 0 \tag{3}$$

Hyperbolic PDE

 It is possible to reformulate the PDE once more, by using the chain rule for the flux divergence

$$u_t + \vec{a}(u) \cdot \vec{\nabla} \, u = 0 \tag{4}$$

where $\vec{a}(u) := \frac{\partial \vec{f}}{\partial u}$ is the flux Jacobian

- Note that $\vec{a}(u)$ has the physical units of a velocity
- In case of a system, where u is a vector, $\vec{a}(u)$ are d matrices
- We see that the assumption on differentiable fluxes \vec{f} is not valid in general (shocks!). This is why the integral form (1) is the natural form, as no assumption on the smoothness is necessary.

Hyperbolic PDE

- It is possible to mathematically classify the PDE by looking at the eigenvalues of the flux Jacobian matrices
 - If all eigenvalues are real numbers, the PDE is characterised as hyperbolic
 - Hyperbolic PDEs typically describe wave propagation phenomena
 - The eigenvalues are speeds of characteristic waves (e.g. sound speed)
 - Many conservation laws are hyperbolic PDEs (e.g. Euler, ideal MHD)

Linear Transport Equation

 The simplest example of a hyperbolic PDE/conservation law is the linear advection equation

$$\frac{\partial u}{\partial t} + \lambda \frac{\partial u}{\partial x} = 0$$

(5)

where $\lambda > 0$ is a real constant

• Given an initial solution $u_0(x)$ at time t=0, it is easy to see that the exact solution is

$$u(x,t) = u_0(x - \lambda t) \tag{6}$$

From the structure of the PDE and its solution, two properties immediately follow

Linear Transport Equation

- Property 1: Conservation of the solution energy u^2
 - Multiply the advection equation by u and integrate over the domain

$$\int\limits_{\Omega} \frac{\partial u}{\partial t} \, u + \lambda \frac{\partial u}{\partial x} \, u \, dx = 0$$

• Use chain rule

$$\int_{\Omega} \frac{1}{2} \frac{\partial u^2}{\partial t} + \lambda \frac{1}{2} \frac{\partial u^2}{\partial x} dx = 0$$
 (8)

to see that u^2 is a conserved quantity with the flux $f(u) = \lambda u^2$

 Note, this property will play a crucial role in Part 2 about the numerical methods

Linear Transport Equation

- Property 2: Characteristics
 - The exact solution $u_0(x-\lambda\,t)$ shows that information $(u_0(x))$ is transported with the velocity $\lambda>0$ along the curves $x(t)=\xi-\lambda\,t$
 - The curves x(t) are straight lines and are called characteristics
 - Along the characteristics the solution is constant

• The slopes of the characteristics are $x'(t) = \lambda = const$

Non-linear case

• The simplest non-linear case is the Burgers' equation

$$u_t + u u_x = 0$$

 $u_t + (u^2/2)_x = 0$

(9)

where the wave speed λ is no longer constant as $\lambda = u$

- It is still possible to formally define the characteristics
 - We construct curves with $x'(t) = \lambda = u$
 - It still holds that the solution is constant along the characteristics, and thus the curve is a straight line as well

Non-linear case

• Consider a special example, the so called Riemann problem

$$u_t + u u_x = 0, \quad u_0(x) = \begin{cases} 1, & \text{for } x < 0 \\ 0, & \text{for } x > 0 \end{cases}$$
 (10)

• The 'left' state $u_L = 1$ and the 'right' state $u_R = 0$ are constant, thus, the characteristics are parallel again FIX ME!!!!

 The solution is constant along characteristics...what happens when they intersect?

Non-linear case

- This issue happens when the slope of the characteristics depends on the solution (non-linear case!)
- The characteristics say that the solution has two different values at the same point (discontinuity!)
- In physics, this is called a shock

• Note that the characteristics can also intersect for smooth initial conditions $u_0(x)$

Riemann problem

- The Riemann problem can be solved analytically
- Depending on the relation of u_L and u_R, different solutions result

- The shock speed (slope) s is computed with the Rankine Hugoniot condition $s=(f_R-f_L)/(u_R-u_L)$
- Note that for system of conservation laws, such as the ideal MHD, the Riemann problem is difficult to solve

Ideal MHD Conserved Quantities

- The ideal MHD equations are used to model the evolution of plasmas
- They are built from the conservation of eight quantities
 - Mass
 - Momenta
 - Total energy
 - Magnetic fields
- These eight quantities are collected into a vector

$$\vec{u} = (\varrho, \varrho \vec{v}, E, \vec{B})^T \tag{11}$$

where $\vec{v} = (u, v, w)^T$ and $\vec{B} = (B_1, B_2, B_3)^T$

Ideal MHD Fluxes

- The fluxes are built from the mathematical modelling as was discussed for the mass flux
 - The momenta fluxes are built from Newton's 2nd law
 - Total energy conservation comes from the First Law of Thermodynamics
 - The magnetic field fluxes are built from the laws of Faraday, Ohm, and Ampere (collectively the Maxwell's equations)

Ideal MHD Equations

• The ideal MHD equations have the form

$$\frac{\partial}{\partial t} \begin{bmatrix} \varrho \\ \varrho \vec{v} \\ E \\ \vec{B} \end{bmatrix} + \vec{\nabla} \cdot \begin{bmatrix} \varrho (\vec{v}\vec{v}^T) + \left(p + \frac{1}{2} ||\vec{B}||^2 \right) \mathcal{I} - \vec{B}\vec{B}^T \\ \vec{v} \left(E + p + \frac{1}{2} ||\vec{B}||^2 \right) - \vec{B}(\vec{v} \cdot \vec{B}) \end{bmatrix} = \vec{0}$$

• Closure of the system is done under the ideal gas assumption

$$p = (\gamma - 1) \left(E - \frac{\varrho \|\vec{v}\|^2}{2} - \frac{\|\vec{B}\|^2}{2} \right)$$
 (13)

(12)

Two-Dimensional Ideal MHD Equations

• For the two-dimensional case considered in this pre-workshop the explicit forms of the fluxes in the x and y directions are

$$\vec{f} = \begin{bmatrix} \varrho u \\ \varrho u^{2} + p + \frac{1}{2} ||\vec{B}||^{2} - B_{1}^{2} \\ \varrho uv - B_{1}B_{2} \\ \varrho uw - B_{1}B_{3} \\ u \left(E + p + \frac{1}{2} ||\vec{B}||^{2}\right) - B_{1}(\vec{v} \cdot \vec{B}) \\ 0 \\ uB_{2} - vB_{1} \\ uB_{3} - wB_{1} \end{bmatrix}, \quad \vec{g} = \begin{bmatrix} \varrho v \\ \varrho uv - B_{1}B_{2} \\ \varrho v^{2} + p + \frac{1}{2} ||\vec{B}||^{2} - B_{2}^{2} \\ \varrho vw - B_{2}B_{3} \\ v \left(E + p + \frac{1}{2} ||\vec{B}||^{2}\right) - B_{2}(\vec{v} \cdot \vec{B}) \\ vB_{1} - uB_{2} \\ 0 \\ vB_{3} - wB_{2} \end{bmatrix}$$

respectively

Equivalent form of Ideal MHD Equations

• The vector of conservative variables is \vec{u} , but another set of **primitive variables** is of interest

$$\vec{\omega} = (\varrho, \vec{\mathbf{v}}, \mathsf{p}, \vec{\mathsf{B}})^T \tag{15}$$

 The primitive variables are useful to rewrite the ideal MHD equations into quasi-linear form, e.g. in 1D,

$$\frac{\partial \vec{\omega}}{\partial t} + A \frac{\partial \vec{\omega}}{\partial x} = 0 \tag{16}$$

where $A = \frac{\partial \vec{f}}{\partial \vec{\omega}}$ is the flux Jacobian matrix

 This is done because the flux Jacobian matrix from the primitive variables is much simpler than the flux Jacobian from the conservative variables

Form of the Flux Jacobian

- However, the matrices are similar having the same eigenvalues but different eigenvectors
- This is very convenient because the wave speeds of the system are of great interest

Eigenvalues of the Flux Jacobian

• The flux Jacobian has eight eigenvalues

$$\lambda_{\pm f} = u \pm c_f, \quad \lambda_{\pm s} = u \pm c_s, \quad \lambda_{\pm a} = u \pm c_a, \quad \lambda_E = u, \quad \lambda_D = 0$$
 (18)

where c_f , c_s are the fast and slow magnetoacoustic wave speeds and c_a is the Alfvén wave speed. The entropy wave (E) moves with the fluid velocity and the divergence wave (D) is stationary

The wave speeds are computed by

$$c_a^2 = \tilde{b}_1^2, \qquad c_{f,s}^2 = \frac{1}{2}(\tilde{a}^2 + \tilde{b}^2) \pm \frac{1}{2}\sqrt{(\tilde{a}^2 + \tilde{b}^2)^2 - 4\tilde{a}^2\tilde{b}_1^2}$$
 (19)

with the convenient notation

$$\vec{\tilde{b}} = (\tilde{b}_1, \tilde{b}_2, \tilde{b}_3)^T = \frac{\vec{B}}{\sqrt{\varrho}}, \quad \tilde{b}^2 = \tilde{b}_1^2 + \tilde{b}_2^2 + \tilde{b}_3^2, \quad \tilde{a}^2 = \frac{p\gamma}{\varrho} \quad (20)$$

• The eigenvalues are well ordered and $|\lambda_{\pm f}|$ will always be the largest

Eigenvalues in Other Spatial Direction

 The eigenvalues for the flux Jacobian in the y direction are very similar

$$\lambda_{\pm f} = v \pm c_f$$
, $\lambda_{\pm s} = v \pm c_s$, $\lambda_{\pm a} = v \pm c_a$, $\lambda_E = v$, $\lambda_D = 0$ (21)

where the computation of c_a and $c_{f,s}$ uses b_2

Divergence-Free Flow

 An additional constraint not explicitly built into the ideal MHD equations is that the magnetic field remains divergence-free

$$\vec{\nabla} \cdot \vec{B} = 0 \tag{22}$$

 This reflects the physical result that magnetic monopoles do not exist

Numerical Issues of $\vec{\nabla} \cdot \vec{B} = 0$

- On the continuous level the divergence-free constraint is assumed to always be satisfied due to Faraday's law
- However, for numerical methods it can be that the divergence-free constraint is violated (even if it is satisfied by the initial conditions)
- Partially this issue arises because the divergence wave of the system is stationary
- This has dramatic implications for the numerical modelling of plasmas as such errors can drive instabilities in the approximation
- Also, violation of the divergence-free constraint may create unphysical solutions as the shock speed of the approximate solution could no longer be correct

Discrete Recovery of $\vec{\nabla} \cdot \vec{B} = 0$

- Some of the methods available to address the numerical issues in the divergence-free condition are
 - 1. Projection methods explicitly remove the non-divergence-free parts of the magnetic field. Unfortunately, this is comes with a high computational cost because it requires the solution of a Poisson problem
 - Constrained transport build the magnetic field components on a staggered grid and construct the fluxes in a certain way to ensure a divergence-free method
 - 3. Hyperbolic divergence cleaning introduces an additional variable proportional to $\vec{\nabla} \cdot \vec{B}$ governed by an advection equation. This new variable is then coupled into the induction equations to control the divergence errors.

Generalized Lagrange Multiplier (GLM) Method

- Select hyperbolic divergence cleaning because it is easy to implement and has a low numerical cost
- ullet Introduce a new variable ψ governed by the advection equaiton

$$\frac{\partial \psi}{\partial t} + \vec{\nabla} \cdot \left(c_h^2 \vec{B} \right) = -\frac{c_h^2}{c_p^2} \psi \tag{23}$$

where c_h is the propagation speed of the divergence error and $c_p \in (0, \infty)$

 A source term is also added for additional damping and control of the divergence error

GLM MHD Equations

 The ideal MHD equations augmented with GLM divergence cleaning take the form

cleaning take the form
$$\frac{\partial}{\partial t} \begin{bmatrix} \varrho \\ \varrho \vec{v} \\ E \\ \vec{B} \\ \psi \end{bmatrix} + \vec{\nabla} \cdot \begin{bmatrix} \varrho(\vec{v}\vec{v}^T) + \left(p + \frac{1}{2} \|\vec{B}\|^2\right) \mathcal{I} - \vec{B}\vec{B}^T \\ \vec{v} \left(E + p + \frac{1}{2} \|\vec{B}\|^2\right) - \vec{B}(\vec{v} \cdot \vec{B}) \\ \vec{v}\vec{B}^T - \vec{B}\vec{v}^T + \psi \mathcal{I} \\ c_h^2 \vec{B} \end{bmatrix} = \begin{bmatrix} 0 \\ \vec{0} \\ 0 \\ -\frac{c_h^2}{c_p^2} \psi \end{bmatrix} \tag{24}$$

 Note the system now contains nine equations and the vector of conserved variables is

$$\vec{u} = (\varrho, \varrho \vec{v}, E, \vec{B}, \frac{\psi}{\psi})^T \tag{25}$$

