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Conservation laws

Many problems in natural sciences and engineering are modelled
following a simple principle: The time rate of change of a
quantity of interest v in a fixed volume is equal to the flux of
u across the boundary of this volume.

e Mathematical translation

e Consider a domain Q C RY and the quantity of interest u
defined for all points x € Q

e This simple principle gives the integral form (or natural form)
of the conservation law

d At
E/udx——f-ﬂnds (1)
Q Bls!

where the flux f = f(u, x, t) and the normal vector 7 points
outward of the domain Q
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Conservation laws

e Examples for quantities of interest that are conserved

e Mass, u= po(x,t)
e Momentum, u = o(x, t) V(x, t)
e Energy, u= E(x,t)
e The form and structure of the fluxes f contain the physical and
mathematical considerations and are specific to the problem
e E.g. the mass flux is given by f= o(x, t)V(x, t)

e Famous examples are the Euler equations in gas dynamics and
the MHD equations in plasma physics
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Partial differential equation

o If we assume that f is differentiable (smooth!) in space, we
can apply Gauss' law to the surface integral and get

d Ng!
dt/udx—/v-fdx (2)
Q Q

e The conservation law holds for all domains Q, thus we get the
PDE form of the conservation law
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Hyperbolic PDE

e |t is possible to reformulate the PDE once more, by using the
chain rule for the flux divergence

ur+3(u)-Vu=0 (4)

where 3(u) := % is the flux Jacobian

e Note that d(u) has the physical units of a velocity

e In case of a system, where u is a vector, d(u) are d matrices

e We see that the assumption on differentiable fluxes fis
not valid in general (shocks!). This is why the integral
form (1) is the natural form, as no assumption on the
smoothness is necessary.
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Hyperbolic PDE

e It is possible to mathematically classify the PDE by looking at
the eigenvalues of the flux Jacobian matrices

e If all eigenvalues are real numbers, the PDE is characterised as
hyperbolic

e Hyperbolic PDEs typically describe wave propagation
phenomena

e The eigenvalues are speeds of characteristic waves (e.g. sound
speed)

e Many conservation laws are hyperbolic PDEs (e.g. Euler, ideal
MHD)

Mathematisches Institut Universitat zu Koln

Mathematisch-Naturwissenschaftliche Fakultat




Linear Transport Equation

e The simplest example of a hyperbolic PDE/conservation law is
the linear advection equation

du ou
a5t - /\a =0 (5)

where A > 0 is a real constant

e Given an initial solution up(x) at time t = 0, it is easy to see
that the exact solution is

u(x,t) = up(x — At) (6)

e From the structure of the PDE and its solution, two properties
immediately follow
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Linear Transport Equation

e Property 1: Conservation of the solution energy u?

e Multiply the advection equation by u and integrate over the

domain 5 5
a—uu—i-/\a—uudx—o (7)
Q
e Use chain rule
10u 1 0u?
/587 /\,701 =<0} (8)
Q

to see that u? is a conserved quantity with the flux f(u) = X u?

e Note, this property will play a crucial role in Part 2 about the
numerical methods
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Linear Transport Equation
e Property 2: Characteristics

e The exact solution up(x — At) shows that information (ug(x))
is transported with the velocity A > 0 along the curves
x(t)=&— At

e The curves x(t) are straight lines and are called
characteristics

e Along the characteristics the solution is constant

t
t= &2
A

t=z

e The slopes of the characteristics are x'(t) = A\ = const
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Non-linear case

e The simplest non-linear case is the Burgers' equation

ur+uu, =0
ue + (1?/2)x =
where the wave speed A is no longer constant as A = u

e |t is still possible to formally define the characteristics

e We construct curves with x'(t) = A =u

e |t still holds that the solution is constant along the
characteristics, and thus the curve is a straight line as well
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Non-linear case
e Consider a special example, the so called Riemann problem

{1, forx <0

10
0, forx>0 3

ur+uux =0, u(x)=

e The ‘left’ state uy = 1 and the 'right’ state ug = 0 are
constant, thus, the characteristics are parallel again FIX ME!!!

T
ur, UR

e The solution is constant along characteristics...what

happens when they intersect?
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Non-linear case

e This issue happens when the slope of the characteristics
depends on the solution (non-linear casel)

e The characteristics say that the solution has two different
values at the same point (discontinuity!)

e In physics, this is called a shock

z

e Note that the characteristics can also intersect for smooth
initial conditions ug(x)
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Riemann problem

e The Riemann problem can be solved analytically

e Depending on the relation of u; and ug, different solutions
result
Rarefaction fan

Shock

ur uR uL up

e The shock speed (slope) s is computed with the Rankine
Hugoniot condition s = (fr — f1)/(ug — ur)

e Note that for system of conservation laws, such as the ideal
MHD, the Riemann problem is difficult to solve
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Ideal MHD Conserved Quantities

e The ideal MHD equations are used to model the evolution of
plasmas

e They are built from the conservation of eight quantities

o Mass

e Momenta

e Total energy

e Magnetic fields

e These eight quantities are collected into a vector

i =(0,0v,E,B)T (11)
where V = (u,v,w)7 and B = (By, B, B3)"
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Ideal MHD Fluxes

e The fluxes are built from the mathematical modelling as was
discussed for the mass flux
e The momenta fluxes are built from Newton's 2" law

e Total energy conservation comes from the First Law of
Thermodynamics

e The magnetic field fluxes are built from the laws of Faraday,
Ohm, and Ampere (collectively the Maxwell's equations)
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Ideal MHD Equations

e The ideal MHD equations have the form

0 o7
0 07| g ) (p+ﬂBH)I BEON S
5 e[tV & L
t|E 7(E+p+3BI?) - B B)
B vBT — BvT
(12)

e Closure of the system is done under the ideal gas assumption

712 B2
p—wv—n<E—m2”—”i”> 13)
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Two-Dimensional Ideal MHD Equations

e For the two-dimensional case considered in this pre-workshop
the explicit forms of the fluxes in the x and y directions are

ou

o + p+ 1B - B2
ouv — B1By
ouw — BlB3

u(E+p+3IBIP) - Bu7-

0
UBZ — VBl
UB3 - WBl

respectively
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ov +p+3|BI” - B3

v(E+p+3IBI?) - Ba(7- B)

(14)
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Equivalent form of Ideal MHD Equations

e The vector of conservative variables is U, but another set of
primitive variables is of interest

&= (0,70, B)" (15)

e The primitive variables are useful to rewrite the ideal MHD
equations into quasi-linear form, e.g. in 1D,
o} 0o
— + A—=0 16
ot + Ox (16)

where A = % is the flux Jacobian matrix

e This is done because the flux Jacobian matrix from the
primitive variables is much simpler than the flux Jacobian from
the conservative variables
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Form of the Flux Jacobian

u o 0 0 00 0 O

1 B B

0 v 0 NSO S
00 w 0 00 -2 0
_B

A0 0 0 w00 O g (a7

0O vp O O\ 06,0/( /Y0 0
o0 0 0 00 0 O
0B B 0 00 u 0
0 Bs 0 —-B 00 0 u |

e However, the matrices are similar having the same eigenvalues
but different eigenvectors

e This is very convenient because the wave speeds of the system

are of ﬁreat interest
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Eigenvalues of the Flux Jacobian

e The flux Jacobian has eight eigenvalues
)\if:Uin, Aiszu:tcs, )\j:a: Ll:tCa, /\E:u, )\DZO (18)

where cf, cs are the fast and slow magnetoacoustic wave
speeds and c, is the Alfvén wave speed. The entropy wave (E)
moves with the fluid velocity and the divergence wave (D) is
stationary

e The wave speeds are computed by

E=R = i@+ )= 1/(@+ )2 a2k (19)
with the convenient notation

b= (b, by, bs)T =&, B=R+BE+5 #=2 (0
e The eigenvalues are well ordered and |A.¢| will always be the
largest
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Eigenvalues in Other Spatial Direction

e The eigenvalues for the flux Jacobian in the y direction are
very similar

)\if =vt Cf, /\is =vt Cs, )\ia =k Ca, /\E =V, )\D =0 (21)

where the computation of ¢, and ¢f ¢ uses by
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Divergence-Free Flow

e An additional constraint not explicitly built into the ideal MHD
equations is that the magnetic field remains divergence-free

V B=0 (22)
e This reflects the physical result that magnetic monopoles do

not exist

3 ——
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Numerical Issues of V- B =0

On the continuous level the divergence-free constraint is
assumed to always be satisfied due to Faraday's law

However, for numerical methods it can be that the
divergence-free constraint is violated (even if it is satisfied by
the initial conditions)

Partially this issue arises because the divergence wave of the
system is stationary

This has dramatic implications for the numerical modelling of
plasmas as such errors can drive instabilities in the
approximation

Also, violation of the divergence-free constraint may create
unphysical solutions as the shock speed of the approximate
solution could no longer be correct
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Discrete Recovery of V-B=0

e Some of the methods available to address the numerical issues
in the divergence-free condition are

1. Projection methods explicitly remove the non-divergence-free
parts of the magnetic field. Unfortunately, this is comes with a
high computational cost because it requires the solution of a
Poisson problem

2. Constrained transport build the magnetic field components on
a staggered grid and construct the fluxes in a certain way to
ensure a divergence-free method

3. Hyperbolic divergence cleaning introduces an additional
variable proportional to V-B governed by an advection
equation. This new variable is then coupled into the induction
equations to control the divergence errors.
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Generalized Lagrange Multiplier (GLM) Method

e Select hyperbolic divergence cleaning because it is easy to
implement and has a low numerical cost

e Introduce a new variable ) governed by the advection equaiton

oy = e\ cﬁ
5tV (c,,B) 11 _73¢ (23)

where ¢, is the propagation speed of the divergence error and
cp € (0,00)

e A source term is also added for additional damping and control
of the divergence error

I E——————————mm——n 28/ 26

Mathematisches Institut Universitat zu Koln

Mathematisch-Naturwissenschaftliche Fakultat



GLM MHD Equations

e The ideal MHD equations augmented with GLM divergence

cleaning take the form

_Q— r
ov o(vvT)+ (p
IV E| 49| v
ot | - VIE+p+
B VBT
LY ] I

oV
+31BI?) 7 - BET
3118)7) - B(7 - B)
— BvT +yI

2B

o O O O

2
h

)
p

w-

(24)

e Note the system now contains nine equations and the vector of

conserved variables is

i=(0,0V,E,B,0)T

(25)
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